

Towards 3D Visual Scene "Understanding"

Bernt Schiele

Max Planck Institute for Informatics, Saarbrücken

Saarland University, Saarbrücken

Complexity of 3D Visual Scene Understanding

- components for "understanding"
 - 3D object models
 - 3D scene layout models

Complexity of 3D Visual Scene Understanding

- components for "understanding"
 - 3D object models
 - 3D scene layout models
 - 3D occlusion reasoning

Complexity of 3D Visual Scene Understanding

- components for "understanding"
 - 3D object models
 - 3D scene layout models
 - 3D occlusion reasoning
 - 3D motion & behavior models
 - prior information about 3D scenes
 - etc. ...

Advances Towards 3D Scene Understanding

- Component Research on...
 - 3D Object Recognition and Segmentation
 - People Detection and Tracking in 3D
- Beyond Component Research on... (and Towards 3D Scene Understanding)
 - 3D Scene Understanding traffic scene analysis as a case study
 - Knowledge Harvesting from Language
 - Video and Scene Descriptions

Complexity of Recognition

Complexity of Recognition

Class of Object Models for Recognition Part-Based Models / Pictorial Structures

- Pictorial Structures [Fischler & Elschlager 1973]
 - Model has two components
 - parts (2D image fragments)
 - structure (configuration of parts)

Implicit Shape Model

Deformable Parts Model (DPM)

PASCAL VOC 2007 Person Detection

- Pictorial structure model
 - 45% precision at 20% recall

PASCAL VOC 2008 Person Detection

- Disjunction of two pictorial structures
 - 80% precision at 20% recall

PASCAL VOC 2009 Person Detection

- Disjunction of three pictorial structures
 - 85% precision at 20% recall

Towards a "True" 3D Object Model

Standard Deformable Parts Model:

[Felzenszwalb@pami10]

- parts and deformations parametrized in 2D
- each viewpoint modeled independently

"True" 3D Object Model

- 3D²PM (3D DPM):
 - 3D parts and 3D deformations are parametrized in 3D object coordinates
 - therefore: parts are linked across different viewpoints!

Qualitative Results

CVPR 2012

Teaching 3D Geometry to Deformable Part Models

Bojan Pepik¹, Michael Stark^{1,2}, Peter Gehler³, Bernt Schiele¹

¹Max Planck Institute for Informatics, ²Stanford University, ³Max Planck Institute for Intelligent Systems

Deep Learning... e.g. Convolutional Networks (CNN)

LeNet5 - Yann LeCun 1998

Regions with CNN (R-CNN) - 2014

3D Object Class Detection and Segmentation based on CNNs

[Pepik, Stark, Gehler, Ritschel, Schiele@cvpr15-workshop]

Qualitative results

Advances Towards 3D Scene Understanding

- Component Research on...
 - 3D Object Recognition and Segmentation
 - People Detection and Tracking in 3D
- Beyond Component Research...
 (and Towards 3D Scene Understanding)
 - ▶ 3D Scene Understanding traffic scene analysis as a case study
 - Knowledge Harvesting from Language
 - Video and Scene Descriptions

Caltech Pedestrian Benchmark

- Features of the Pedestrian Dataset:
 - 11h of 'normal' driving in urban environment (greater LA area)
 - annotation:
 - 250,000 frames (~137 min) annotated with 350,000 labeled bounding boxes of 2,300 unique pedestrians
 - occlusion annotation: 2 bounding boxes for entire pedestrian & visible region
 - difference between 'single person' and 'groups of people'

Caltech-USA currently the most active dataset

Great Progress in People / Pedestrian Detection During last 10 Years

Performance is Still Improving

Multipeople Tracking using Multi Cut Subgraph Partitioning

Subgraph decomposition for multi-object tracking

- Desired property of "tracking by graph decomposition"
 - joint spatial-temporal association
 - resulting in robust tracking results

Multipeople Tracking Qualitative Results

Body Pose Estimation: Pictorial Structures (PS) Model

Posterior over body poses

$$p(L|D) \propto p(D|L)p(L)$$

likelihood of part observations (appearance model)

prior on body poses

Motivation

Classic: tree-structured models

- generic kinematic tree
- capture adjacent part dependencies only

- √ poselet conditioned kinematic tree
- √ poselets capture non-adjacent part dependencies

Poselet Conditioned Pictorial Structures Model

Poselet Conditioned Model - Qualitative Results

Poselet Conditioned PS

Top poselet detections

Cluster medoids

Prediction

Result using prediction

Classic PS

Generic tree

Result using generic tree

3D Pose Estimation and Tracking

Integrated Detection & Tracking in 3D

- example of multi-viewpoint detection & tracking
 - note: monocular camera, no static camera assumption is used

3D Pictorial Structures Model for 3D Human Pose Estimation

Multi-View – Multiple Human

[Belagiannis, Amin, Andriluka, Schiele, Navab, Ilic@CVPR'14]

Interim Discussion: Computer Vision Components...

- Significant progress in the last 10+ years
 - has also let to increased industry interest :)
- Machine Learning
 - played a prominent role in the last decade (deep neural networks particularly in the last few years)
 - will remain instrumental
- 3D information is important and becomes more accessible by
 - 3D modeling & inference
 - 3D sensors

Advances Towards 3D Scene Understanding

- Component Research on...
 - ▶ 3D Object Recognition and Segmentation
 - People Detection and Tracking in 3D
- Beyond Component Research on...
 (and Towards 3D Scene Understanding)
 - > 3D Scene Understanding traffic scene analysis as a case study
 - Knowledge Harvesting from Language
 - Video and Scene Descriptions

3D Scene Understanding

3D scene analysis for mobile platforms (i.e. robots, cars)

 mobile observer aims to "understand" its 3D mobile environment i.e. traffic, people, etc

- Application scenarios
 - Traffic safety and driver assistance
 - Autonomous vehicles
 - Robotics

A state-of-the-art Approach (monocular camera)

Image sequence

Bayesian 3D scene model

System sample video (pedestrians)

ETH-Loewenplatz sequence: By courtesy of ETH Zürich [Ess et al., PAMI '09]

Sample Result including Occlusion Reasoning

System sample video (different types of vehicles)

- Message
 - modeling and reasoning in 3D is powerful:
 e.g. for occlusion reasoning, inclusion of prior information

Advances Towards 3D Scene Understanding

- Component Research on...
 - ▶ 3D Object Recognition and Segmentation
 - People Detection and Tracking in 3D
- Beyond Component Research on... (and Towards 3D Scene Understanding)
 - ▶ 3D Scene Understanding traffic scene analysis as a case study
 - Knowledge Harvesting from Language
 - Video and Scene Descriptions

Donate to Wikipedia

Interaction

- Text can provide
 - Attributes

- Attributes
- (Direct) similarities between classes / objects

- **Attributes**
- (Direct) similarities between classes / objects
- **Context information (might be visible or not)**

- Visual Side
 - Videos of Activities

- Linguistic Side
 - Textual Descriptions (scripts)

First wash carrot with water.
Then peel skin of the carrot with peeler. Finally, cut off ends with knife and slice carrot.

- Visual Side
 - Videos of Activities

- Linguistic Side
 - Textual Descriptions (scripts)

First wash carrot with water.
Then peel skin of the carrot with peeler. Finally, cut off ends with knife and slice carrot.

- Shared information
 - Structure

- Visual Side
 - Videos of Activities

- Linguistic Side
 - Textual Descriptions (scripts)

First wash carrot with water.
Then peel skin of the carrot
with peeler. Finally, cut off
ends with knife and slice carrot.

- Shared information
 - Structure
 - Ingredients & Tools

- Visual Side
 - Videos of Activities

- Linguistic Side
 - Textual Descriptions (scripts)

First wash carrot with water.
Then peel skin of the carrot
with peeler. Finally, cut off
ends with knife and slice carrot.

- Shared information
 - Structure
 - Ingredients & Tools
 - Activities

Knowledge Harvesting from Language

- Why?
 - We won't have Sufficient Training Data to learn EVERYTHING from Data
- Text is currently the largest source of knowledge
 - tapping into large text corpora (e.g. wikipedia)
 - leverage textual descriptions of images & videos
 - ...
- Examples of interesting knowledge
 - Objects: relation to other objects, appearance, context, ...
 - Activities: information about structure, objects involved, sub-activities, ...
 - Prior knowledge (e.g. about traffic scenes)
 - ...
- Examples from our work
 - Zero-Shot Learning of Objects and Activities

Attribute-based Model for Object Class Recognition

Attribute-based Model for Object Class Recognition

Zero Shot Structured Embedding

$$f(x; W) = \arg\max_{y \in \mathcal{Y}} F(x, y; W) = \arg\max_{y \in \mathcal{Y}} \underbrace{\theta(x)}_{\text{img feat class att}}^{\top} W \underbrace{\varphi(y)}_{\text{img feat class att}}$$

Output Embeddings beyond Attributes...

Attributes - require human supervision!

Unsupervised Embeddings (any Vectorized Representation)

Word2Vec [3]	$\varphi^{\mathcal{W}}$	(1) look-up table to retrieve word vector in vocabulary.(2) predict target word from context via hie. soft-max.	Hlack-footed Albatross
GloVe [4]	φ^g	Objective: $\varphi^{\mathcal{G}}(v1).\varphi^{\mathcal{G}}(v2) = co - occurrence(v1, v2)$	Wikipedia (no supervision) Wikipedia (no supervision) California Gull
Weakly- supervised Word2Vec	$arphi^{\mathcal{W}_{ t ws}}$	Pre-train Word2vec layer (1) weights on wikipedia, Fine-tune layer (2) weights on fine-grained text corpus: $L = \sum_{w,c \in D_+} \log \sigma(v_c^\top v_w) + \sum_{w',c \in D} \log \sigma(-v_c^\top v_{w'})$ $v_c = \sum_{i \in context(\mathbf{w})} v_i / context(\mathbf{w}) $	Weakly-Supervised WordZVec
Bag-of-Words	$\varphi^{\mathcal{B}}$	Histograms of frequent words in wikipedia document.	Black-footed Albatross dark feet large water sea plumage black curved
Hierarchies	$\varphi^{\mathcal{H}}$	Distance between classes (synsets) in WordNet is calculated using different hierarchical distance metrics.	Black-footed Laysan House Song Albatross Albatross Sparrow Sparrow

Zero Shot Structured Embedding - Results

- Dataset (more in the paper)
 - AWA animals with attributes
- Input Embedding
 - GoogleLeNet 1024-dimensional output of last layer
- Main Results
 - unsupervised zero-shot learning shows promising results
 - complementary to human supervision (attributes)

supervision	source	φ	AWA
	text	$\varphi^{\mathcal{W}}$	51.2
	text	φ^g	58.8
unsupervised	text	φ^g φ^B	44.9
	WordNet	$\varphi^{\mathcal{H}}$	51.2
	text + WordNet	cmb	60.1
	human	$\varphi^{0,1}$	52.0
supervised	human	QA.	66.7
	human + text	cmb	73.9
SoA [1]	human	$\varphi^{\mathcal{A}}$	49.4

Advances Towards 3D Scene Understanding

- Component Research on...
 - 3D Object Recognition and Segmentation
 - People Detection and Tracking in 3D
- Beyond Component Research on... (and Towards 3D Scene Understanding)
 - ▶ 3D Scene Understanding traffic scene analysis as a case study
 - Knowledge Harvesting from Language
 - Video and Scene Descriptions

Describing Video With Natural Language

- Parallel Corpus
 - videos + semantic annotations + language descriptions

Peel skin of the carrot with peeler.

- Idea: 2-Step Approach:
 - ▶ 1. Extract Semantic Representation:
 - Video ➤ Semantic Representation
 - 2. Learn Language Translation Model:
 - Semantic Representation ➤ Language Descriptions

Take Home Messages

- Machine learning has been and will continue to be a driver
 - lots of data (internet, storage, ...)
 - fast processing (CPU and GPU clusters, ...)
 - powerful machine learning models (deep learning, graphical models, ...)
- 3D information is essential and becomes viable
 - through 3D sensors
 - through 3D modeling & inference
- Combining knowledge and computer vision is important
 - text is currently the largest source of knowledge
 - knowledge mining in all kinds of data (youtube, flickr, social networks, ...)
- We are always looking for great people (PostDocs, Students, ...:-)
 - send email to <u>schiele@mpi-inf.mpg.de</u>

Towards 3D Visual Scene "Understanding"

Bernt Schiele

Max Planck Institute for Informatics, Saarbrücken
Saarland University, Saarbrücken
schiele@mpi-inf.mpg.de

