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Complexity of 3D Visual Scene Understanding

• components for 
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‣ 3D object models 
‣ 3D scene layout 

models
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Complexity of 3D Visual Scene Understanding
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• components for 
“understanding” 
‣ 3D object models 
‣ 3D scene layout 

models 
‣ 3D occlusion 

reasoning 
‣ 3D motion & 

behavior models 
‣ prior information 

about 3D scenes 
‣ etc. ...
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Advances Towards 3D Scene Understanding 

• Component Research on… 
‣ 3D Object Recognition and Segmentation 
‣ People Detection and Tracking in 3D 

• Beyond Component Research on…  
(and Towards 3D Scene Understanding) 
‣ 3D Scene Understanding - traffic scene analysis as a case study  
‣ Knowledge Harvesting from Language 
‣ Video and Scene Descriptions
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Complexity of Recognition
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Complexity of Recognition
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Class of Object Models for Recognition 
Part-Based Models / Pictorial Structures
• Pictorial Structures [Fischler & Elschlager 1973] 
‣ Model has two components 

- parts (2D image fragments) 

- structure (configuration of parts)

8



Towards 3D Visual Scene “Understanding” | Bernt Schiele

Implicit Shape Model
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[Leibe,Schiele@BMVC’03]
[Leibe,Leonardis,Schiele@IJCV’08]
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Deformable Parts Model (DPM)
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[Felzenszwalb,Girshick,McAllester,Ramanan@PAMI’10]



Towards 3D Visual Scene “Understanding” | Bernt Schiele

Towards a “True” 3D Object Model
• Standard Deformable Parts Model: 

‣ parts and deformations parametrized in 2D 
‣ each viewpoint modeled independently
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[Felzenszwalb@pami10]
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“True” 3D Object Model
• 3D2PM (3D - DPM): 
‣ 3D parts and 3D deformations are parametrized in 3D object 

coordinates 
‣ therefore: parts are linked across different viewpoints !
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[Pepik,Stark,Gehler,Schiele@PAMI’15]
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Qualitative Results
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[Pepik,Stark,Gehler,Schiele@PAMI’15]
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Deep Learning… 
e.g. Convolutional Networks (CNN) 
• LeNet5 - Yann LeCun 1998 

• Regions with CNN (R-CNN) - 2014
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Keypoint  
detections
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2D object and  
keypoint detection
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2D Object Class 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[Pepik,Stark,Gehler,Ritschel,Schiele@cvpr15-workshop]
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Qualitative results
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Figure 3. 3D CAD prototype alignment examples. (Blue) good alignments, (red) bad alignments. RCNN-Ridge-L fails mainly on truncated
and occluded cases. For more 3D alignment visualizations please see the supplemental material.

4.1. 2D Bounding box localization

We start by evaluating the first stage of our pipeline, 2D
object class detection (Sect. 3.1), in the classical 2D BB
localization task, as defined by PASCAL VOC [13]. Fig 4
(left) compares the performance of our RCNN in its discrete
multi-view variant RCNN-MV (cyan) to CNN-MV (green)
and the state-of-the-art methods on this dataset, VDPM [50]
(blue) and DPM-VOC+VP [42] (light blue). It reports the
mean average precision (mAP) over all 11 classes of Pas-
cal3D+ (per-class results are part of the supplemental mate-
rial) for different numbers of discrete azimuth bins, as sug-
gested by the PASCAL3D+ benchmark: VP1, VP4, VP8,
VP16 and VP24 denote the number of discrete viewpoint-
dependent components of the respective model. Note that
for the VP1 case, the VDPM model reduces to the standard
DPM [15] and RCNN-MV to the standard RCNN.

Results. We make the following observations. First,
for VP1, both RCNN (51.2%) and CNN (47.6%) outper-
form the previous state-of-the-art result of VDPM (29.6%)
by significant margins of 21.6% and 18.0%, respectively, in
line with prior reports concerning the superiority of CNN-
over DPM-based detectors [20]. Second, we observe that
the performance of VDPM and DPM-VOC+VP remains
stable or even slightly increases when increasing the num-
ber of components (e.g., from 29.6% to 30.0% for VDPM
and from 27.0% to 28.3% for DPM-VOC+VP and VP16).

Curiously, this tendency is essentially inverted for RCNN
and CNN: performance drops dramatically from 51.2% to
30.8% and from 47.6% to 27.6% for AP24, respectively.

Conclusion. We conclude that, while the training of
per-viewpoint components is a viable strategy for DPM-
based methods, RCNN-MV and CNN-MV both suffer from
the decrease in training data available per component. We
hence elect RCNN as the first stage of our 3D detection
pipeline, leaving us with the need for another pipeline stage
capable of estimating viewpoint.

4.2. Simultaneous 2D BB and viewpoint estimation

The original PASCAL3D+ work [50] suggests to quan-
tify the performance of simultaneous 2D BB localization
and viewpoint estimation via a combined measure, average
viewpoint precision (AVP). It extends the traditional PAS-
CAL VOC [13] detection criterion to only consider a de-
tection a true positive if it satisfies both the IoU BB over-
lap criterion and correctly predicts the ground truth view-
point bin (AVP  AP). This evaluation is repeated for dif-
ferent numbers of azimuth angle bins VP4, VP8, VP16 and
VP24. While this is a step in the right direction, we be-
lieve that viewpoint is inherently a continuous quantity that
should be evaluated accordingly. We hence propose to con-
sider the entire continuum of possible azimuth angle errors
D 2 [0�, . . . , 180�], and count a detection as a true positive
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Figure 3. 3D CAD prototype alignment examples. (Blue) good alignments, (red) bad alignments. RCNN-Ridge-L fails mainly on truncated
and occluded cases. For more 3D alignment visualizations please see the supplemental material.
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based methods, RCNN-MV and CNN-MV both suffer from
the decrease in training data available per component. We
hence elect RCNN as the first stage of our 3D detection
pipeline, leaving us with the need for another pipeline stage
capable of estimating viewpoint.

4.2. Simultaneous 2D BB and viewpoint estimation

The original PASCAL3D+ work [50] suggests to quan-
tify the performance of simultaneous 2D BB localization
and viewpoint estimation via a combined measure, average
viewpoint precision (AVP). It extends the traditional PAS-
CAL VOC [13] detection criterion to only consider a de-
tection a true positive if it satisfies both the IoU BB over-
lap criterion and correctly predicts the ground truth view-
point bin (AVP  AP). This evaluation is repeated for dif-
ferent numbers of azimuth angle bins VP4, VP8, VP16 and
VP24. While this is a step in the right direction, we be-
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Figure 3. 3D CAD prototype alignment examples on all Pascal3D+ classes. The 3D alignment fails mostly due to truncations (row 1 and
2), occlusions (row 3 and 4), unusual shapes (row 5), viewpoints (row 6) and strong perspective effects for objects close to the camera (row
7).

based on the RCNN-Ridge-L. While being able to detect the
correct 3D object shape in most of the cases, RCNN-Ridge-
L also succeeds in predicting the 3D viewpoint of the ob-
jects and can capture variations in the 3 rotation parameters
(azimuth, elevation and in-plane rotation).

Fig. 3 illustrates failure cases of the 3D CAD prototype
alignment. Note that the majority of failure cases are trun-
cated (rows 1 and 2) and occluded objects (rows 3 and 4).
RCNN-Ridge-L also fails when unusual 3D shape (row 5)
or viewpoint (row 6) are encountered. Objects close to the
camera are also an issue (row 7).
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Figure 3. 3D CAD prototype alignment examples on all Pascal3D+ classes. The 3D alignment fails mostly due to truncations (row 1 and
2), occlusions (row 3 and 4), unusual shapes (row 5), viewpoints (row 6) and strong perspective effects for objects close to the camera (row
7).
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L also succeeds in predicting the 3D viewpoint of the ob-
jects and can capture variations in the 3 rotation parameters
(azimuth, elevation and in-plane rotation).
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alignment. Note that the majority of failure cases are trun-
cated (rows 1 and 2) and occluded objects (rows 3 and 4).
RCNN-Ridge-L also fails when unusual 3D shape (row 5)
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Advances Towards 3D Scene Understanding 

• Component Research on… 
‣ 3D Object Recognition and Segmentation 
‣ People Detection and Tracking in 3D 

• Beyond Component Research…  
(and Towards 3D Scene Understanding) 
‣ 3D Scene Understanding - traffic scene analysis as a case study  
‣ Knowledge Harvesting from Language 
‣ Video and Scene Descriptions
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Caltech Pedestrian Benchmark
• Features of the Pedestrian Dataset: 
‣ 11h of ‘normal’ driving in urban  

environment (greater LA area) 
‣ annotation:  

- 250,000 frames (~137 min) annotated with  
350,000 labeled bounding boxes of 2,300 unique pedestrians 

- occlusion annotation: 2 bounding boxes for entire pedestrian & visible region 

- difference between ‘single person’ and ‘groups of people’

18

[Dollar,Wojek,Perona,Schiele@PAMI’12]

Caltech-USA currently the most active dataset
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Great Progress in People / Pedestrian Detection  
During last 10 Years
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Performance is Still Improving 

20

[Zhang,Benenson,Schiele@CVPR’15]

best CVPR’14 (june)

best ECCV’14 (october)

best CVPR’15 (june)
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Multipeople Tracking using  
Multi Cut Subgraph Partitioning
• Subgraph decomposition for multi-object tracking 

• Desired property of “tracking by graph decomposition” 
‣ joint spatial-temporal association  
‣ resulting in robust tracking results

21

frame 50frame 10 frame 30

[Tang,Andriluka,Andres,Schiele@CVPR’15]
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Multipeople Tracking  
Qualitative Results

22

Dotted rectangles are interpolated tracks.

Detection 
Hypotheses

Tracklet 
Hypotheses

Multicut 
Decomposition

Final Tracks

[Tang,Andriluka,Andres,Schiele@CVPR’15]
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Body Pose Estimation: 
Pictorial Structures (PS) Model 

23
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

p(L|D) � p(D|L)p(L)

prior on body poseslikelihood of part observations  
(appearance model)

Posterior over body poses

[Felzenszwalb,Huttenlocher@IJCV’05]
[Andriluka,Roth,Schiele@IJCV’12]
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Motivation

24

Classic: tree-structured models

- generic kinematic tree  
- capture adjacent part dependencies only

[cvpr13]
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Poselet Conditioned Pictorial Structures Model
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Poselet Conditioned Model - Qualitative Results
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[Pishculin,Andriluka,Gehler,Schiele@CVPR’13]
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3D pose 
estimation

3D Pose Estimation and Tracking
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1. Single-frame 
detection 

 

2. 2D-Tracklet 
detection

3. 2D-to-3D lifting 
(tracking & pose 

estimation)

2D Part 
Positions

3D Pose 
Estimation

3D Pose 
EstimationBounding  

Boxes (2D)

Viewpoint 
estimates

2D Part 
Tracklets

Viewpoint 
Tracklets

[Andriluka,Roth,Schiele@CVPR’10]
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Integrated Detection & Tracking in 3D
• example of multi-viewpoint detection & tracking 
‣ note: monocular camera, no static camera assumption is used 

28
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3D Pictorial Structures Model for  
3D Human Pose Estimation
• Multi-View – Multiple Human

29
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Interim Discussion:  
Computer Vision Components…
• Significant progress in the last 10+ years 
‣ has also let to increased industry interest :) 

• Machine Learning  
‣ played a prominent role in the last decade  

(deep neural networks particularly in the last few years) 
‣ will remain instrumental 

• 3D information is important and becomes more accessible by 
‣ 3D modeling & inference 
‣ 3D sensors
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Advances Towards 3D Scene Understanding 

• Component Research on… 
‣ 3D Object Recognition and Segmentation 
‣ People Detection and Tracking in 3D 

• Beyond Component Research on…  
(and Towards 3D Scene Understanding)  
‣ 3D Scene Understanding - traffic scene analysis as a case study  
‣ Knowledge Harvesting from Language 
‣ Video and Scene Descriptions
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3D Scene Understanding
• 3D scene analysis for mobile platforms (i.e. robots, cars) 
‣ mobile observer aims to “understand”  

its 3D mobile environment  
i.e. traffic, people, etc 

• Application scenarios 
‣ Traffic safety and driver assistance 
‣ Autonomous vehicles  
‣ Robotics
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A state-of-the-art Approach (monocular camera)

Image	  sequence Bayesian	  3D	  scene	  model

Object	  detec8ons

Seman8c 
scene	  labels

Prior	  informa8on	  
(camera,	  objects)

T-‐1
T
T+1

Scene	  
tracklets
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System sample video (pedestrians)

ETH-‐Loewenplatz	  sequence:	  By	  courtesy	  
of	  ETH	  Zürich	  [Ess	  et	  al.,	  PAMI	  ’09]
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Sample Result including Occlusion Reasoning

35

[Wojek,Roth,Schindler,Schiele@CVPR’11]



Towards 3D Visual Scene “Understanding” | Bernt Schiele

System sample video (different types of vehicles)

• Message 
‣ modeling and reasoning in 3D is powerful: 

e.g. for occlusion reasoning, inclusion of prior information 

36

[Wojek,Roth,Schindler,Schiele@PAMI’13]



Towards 3D Visual Scene “Understanding” | Bernt Schiele

Advances Towards 3D Scene Understanding 

• Component Research on… 
‣ 3D Object Recognition and Segmentation 
‣ People Detection and Tracking in 3D 

• Beyond Component Research on…  
(and Towards 3D Scene Understanding)   
‣ 3D Scene Understanding - traffic scene analysis as a case study  
‣ Knowledge Harvesting from Language 
‣ Video and Scene Descriptions
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Motivation: Knowledge Harvesting from Language

38

The giant panda is a bear which is native to central-western 
and south western China.  
It is easily recognized by its large, distinctive black patches 
around the eyes, over the ears, and across its round body.

Giant Panda
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Motivation: Knowledge Harvesting from Language

• Text can provide 
‣ Attributes
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The giant panda is a bear which is native to central-western 
and south western China.  
It is easily recognized by its large, distinctive black patches 
around the eyes, over the ears, and across its round body.

Motivation: Knowledge Harvesting from Language

• Text can provide 
‣ Attributes 
‣ (Direct) similarities between classes / objects
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The giant panda is a bear which is native to central-
western and south western China.  
It is easily recognized by its large, distinctive black patches 
around the eyes, over the ears, and across its round body.

Motivation: Knowledge Harvesting from Language

• Text can provide 
‣ Attributes 
‣ (Direct) similarities between classes / objects 
‣ Context information (might be visible or not)

41
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Motivation: Knowledge Harvesting from Language
• Visual Side 
‣ Videos of Activities

42

• Linguistic Side 
‣ Textual Descriptions (scripts) 

First wash carrot with water.  
Then peel skin of the carrot  
with peeler. Finally, cut off  
ends with knife and slice carrot.
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Motivation: Knowledge Harvesting from Language
• Visual Side 
‣ Videos of Activities
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• Linguistic Side 
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Motivation: Knowledge Harvesting from Language
• Visual Side 
‣ Videos of Activities
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• Linguistic Side 
‣ Textual Descriptions (scripts) 

‣ Shared information 
‣ Structure 
‣ Ingredients & Tools 

First wash carrot with water.  
Then peel skin of the carrot 
with peeler. Finally, cut off 
ends with knife and slice carrot.
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Motivation: Knowledge Harvesting from Language
• Visual Side 
‣ Videos of Activities
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• Linguistic Side 
‣ Textual Descriptions (scripts) 

‣ Shared information 
‣ Structure 
‣ Ingredients & Tools 
‣ Activities

First wash carrot with water.  
Then peel skin of the carrot 
with peeler. Finally, cut off 
ends with knife and slice carrot.
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Knowledge Harvesting from Language
• Why?  
‣ We won’t have Sufficient Training Data to learn EVERYTHING from Data  

• Text is currently the largest source of knowledge 
‣ tapping into large text corpora (e.g. wikipedia) 
‣ leverage textual descriptions of images & videos 
‣ … 

• Examples of interesting knowledge 
‣ Objects: relation to other objects, appearance, context, … 
‣ Activities: information about structure, objects involved, sub-activities, … 
‣ Prior knowledge (e.g. about traffic scenes) 
‣ … 

• Examples from our work 
‣ Zero-Shot Learning of Objects and Activities
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Attribute-based Model for Object Class Recognition

47

oceanspots …

Known	   
training	  classes

AFribute	    
classifiers

Unknown 
test	  classes

Class-‐a&ribute	  
associa0ons

Class-‐a&ribute	  
associa0ons

[Lampert	  et	  al.,	  CVPR	  `09]	  

Supervised:	  
manual	  (human	  judges)

AFributes
white
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Attribute-based Model for Object Class Recognition

48

Word 
Net

seman8c	  relatedness 
from	  language

[Lampert	  et	  al.,	  CVPR	  `09]	  

Supervised:	  
manual	  (human	  judges)

oceanspots …

Known	   
training	  classes

AFribute	    
classifiers

Unknown 
test	  classes

Class-‐a&ribute	  
associa0ons

Class-‐a&ribute	  
associa0ons

white
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Zero Shot Structured Embedding
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Output Embeddings beyond Attributes…
• Attributes - require human supervision ! 

• Unsupervised Embeddings (any Vectorized Representation)
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Zero Shot Structured Embedding - Results
• Dataset (more in the paper) 
‣ AWA - animals with attributes 

• Input Embedding 
‣ GoogleLeNet  

1024-dimensional 
output of last layer 

• Main Results 
‣ unsupervised  

zero-shot learning 
shows promising results 

‣ complementary to human 
supervision (attributes)
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Advances Towards 3D Scene Understanding 

• Component Research on… 
‣ 3D Object Recognition and Segmentation 
‣ People Detection and Tracking in 3D 

• Beyond Component Research on…  
(and Towards 3D Scene Understanding)   
‣ 3D Scene Understanding - traffic scene analysis as a case study  
‣ Knowledge Harvesting from Language 
‣ Video and Scene Descriptions
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Describing Video With Natural Language
• Parallel Corpus 
‣ videos      +    semantic annotations  +  language descriptions 

• Idea: 2-Step Approach:  
‣ 1.  Extract Semantic Representation: 

- Video ➽ Semantic Representation 

‣ 2. Learn Language Translation Model: 
- Semantic Representation ➽ Language Descriptions
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Peel	  skin	  of	  the	  carrot	  
with	  peeler.
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...	  

Example: Multi-sentence video description 

54

[Rohrbach@iccv13] & [Rohrbach@gcpr14]



Towards 3D Visual Scene “Understanding” | Bernt Schiele

A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...

Example: Multi-sentence video description 
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...

Example: Multi-sentence video description 
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...

Example: Multi-sentence video description 
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ... 

Example: Multi-sentence video description 
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...

Example: Multi-sentence video description 
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...

Example: Multi-sentence video description 
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A	  woman	  got	  out	  a	  knife	  
from	  the	  drawer.	  Then,	  
she	  peeled	  the	  onion.	  
She	  took	  out	  a	  cutting	  
board	  and	  a	  cutting	  
board	  from	  the	  drawer.	  
The	  woman	  chopped	  the	  
onion	  on	  the	  cutting	  
board.	  She	  put	  the	  onion	  
in	  the	  pan.	  Next,	  she	  
diced	  and	  cut	  the	  onion	  
on	  the	  cutting	  board.	  
She	  threw	  away	  the	  peel.	  
She	  added	  the	  onions	  in	  
the	  pan.	  ...

Example: Multi-sentence video description 

61

[Rohrbach@iccv13] & [Rohrbach@gcpr14]



Towards 3D Visual Scene “Understanding” | Bernt Schiele

Take Home Messages
• Machine learning has been and will continue to be a driver 
‣ lots of data (internet, storage, …) 
‣ fast processing (CPU and GPU clusters, …) 
‣ powerful machine learning models (deep learning, graphical models, …) 

• 3D information is essential and becomes viable 
‣ through 3D sensors 
‣ through 3D modeling & inference 

• Combining knowledge and computer vision is important 
‣ text is currently the largest source of knowledge 
‣ knowledge mining in all kinds of data (youtube, flickr, social networks, …) 

• We are always looking for great people (PostDocs, Students, …:-) 
‣ send email to schiele@mpi-inf.mpg.de

62



Towards 3D Visual Scene “Understanding”

Bernt Schiele 
Max Planck Institute for Informatics, Saarbrücken 

Saarland University, Saarbrücken 
schiele@mpi-inf.mpg.de


